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Cylinder gratings in conical incidence with applications to modes
of air-cored photonic crystal fibers
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We develop a formulation for cylinder gratings in conical incidence, using a multipole method. The theory,
and its numerical implementation, is applied to two-dimensional photonic crystals consisting of a stack of
one-dimensional gratings, each characterized by its plane wave scattering matrix. These matrices are used in
combination with Bloch’s theorem to determine the band structure of the photonic crystal from the solution of
an eigenvalue problem. We show that the theory is well adapted to the difficult task of locating the complete
band gaps needed to support air-guided modes in microstructured optical fibers, that is, optical fibers in which
the confinement of light in a central air hole is achieved by photonic band-gap effects in a periodic cladding
comprising a lattice of air holes in a glass matrix.
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I. INTRODUCTION

The study of the electromagnetic diffraction by gratings
now a mature field, with numerical formulations available
provide results of high accuracy for theoretical and tech
logical investigations~see, for example, the books by Hutle
@1# and by Loewen and Popov@2#!. However, by far the
majority of investigations into grating diffraction conce
themselves with the case of classical diffraction, where
grating is illuminated by a plane wave with a zero comp
nent along the direction of the grating generators. Loew
and Popov justify this in the following way: ‘‘The more gen
eral case of conical diffraction does not introduce fundam
tal difficulties, but complicates the mathematical and num
cal treatment and also is not widely used in practice. A
theory that can deal successfully with the two fundamen
cases of polarization can be generalized, if necessary, to
with the conical case.’’ It is one of the purposes of this pa
to show that this judgement was somewhat premature, g
two recent applications which have emerged, and which
tify the development of formulations for conical diffractio
by gratings. Both are connected with photonic band-g
structures. The first is the so-called woodpile structure
achieving a photonic band gap. For references relating to
origin of this geometry, see Ref.@3#. It has attracted much
attention recently, since it is a three-dimensional structu
yet it can be fabricated using two-dimensional lithography
a multistep process. As a result, Lin and Fleming@4,5# have
been able to fabricate a structure exhibiting a band gap a
important telecommunications wavelength band near
mm.

The second application is concerned with microstructu
optical fibers, a new type of optical fiber in which confin
ment of light is achieved by the introduction of numerous
1063-651X/2002/66~5!/056604~16!/$20.00 66 0566
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holes running parallel to the fiber rather than by doping
fiber core@6,7#. One type of microstructured optical fiber ha
a central air hole as well as confining air holes, and its aim
to achieve a fiber in which light propagates as much as p
sible in air@8–10#. The confinement of light in the central a
hole is achieved by photonic band-gap effects and the lo
tion of the modes that can propagate in this type of fiber
numerically difficult task. We will show how this task ma
be expedited using the scattering properties of gratings
conical incidence.

The diffraction grating we study here is an assemblage
circular cylinders, which may be composed of either diele
tric or metal. For simplicity, we will consider the case whe
the unit cell of the grating contains only one cylinder, a
though the generalization to multiple cylinders per unit c
is straightforward and valuable@11,12#. We note that Li@13#
has treated conical diffraction by gratings composed of re
angular rods, generalizing our earlier work on a modal f
mulation for dielectric and metallic lamellar gratings@14#,
while Centeno and Felbacq@15,16# consider the behavior o
band gaps in photonic crystals as functions of polarizat
and conicity of the incident plane wave. Li’s formulation h
been exploited in recent work on woodpiles composed
dielectric lamellar gratings in the thesis by Gralak@17#.

We begin with the formulation for the theory for the con
cal diffraction of a single cylinder grating~Sec. II!. This
method extends the treatment of Refs.@18,19# to derive plane
wave scattering matrices and, in Sec. III, a different form
the Bloch method, which enables us to compute dispers
diagrams for periodic structures such as photonic cryst
The method is based on a Rayleigh identity treatment@11,12#
involving lattice sums, which are in keeping with Maystre
theorem on conical diffraction@20#, in that they are the sam
as lattice sums for classical diffraction if we replace the wa
©2002 The American Physical Society04-1
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vector by its projection perpendicular to the grating pla
The formulation has been verified using a set of converge
and conservation criteria and by comparison with our pre
ous formulations for classical incidence@18,21#. In Sec. IV,
our techniques are applied to the study of the modes wh
can exist in photonic crystals composed of circular dielec
rods, for the case of out-of-plane propagation@22#. We show
that this leads to a method capable of indicating the regi
in which one may expect to find the air-guided modes
microstructured optical fibers~MOF! with air cores@8,9#.

In a future paper, we shall apply this treatment to str
tures in the woodpile configuration@3#. The additional layer
introduces dispersion in the orthogonal direction and
plane wave set is indexed by dual subscripts. This featur
adopted here to maintain a consistent notation for both
pers. The prescription of the scattering matrix requires
solution of a family of diffraction problems~for each layer!
associated with the dispersion directions introduced by
second layer. The scattering matrices are thus not dense
comprise a sequence of blocks~or some permutation
thereof!, each derived from the application of the basic co
cal diffraction problem. The theory can then be applied
deduce the spectral properties of the woodpile layering
the band diagram for a woodpile photonic crystal.

We conclude this introductory section with a brief d
scription of our notation. At the lowest level~level 1, say!,
we denote vectors and matrices by boldface Roman or G
letters (A,x̂,d,...). Thenotationf5@ f s# denotes a vector o
coefficientsf s . Block matrices of level 1 objects are denot
by boldface calligraphic capital letters or, occasionally, bo
face Fraktur capitals~A,F,R, . . . !. Such level 2 objects
encapsulate both electric and magnetic fields or TE and
fields. Block matrices of level 2 objects are denoted by b
sans serif capital letters~S,F, . . . !. These encapsulate field
both above and below a grating.

II. CONICAL DIFFRACTION THEORY

A. Outline of the theory

We consider conical diffraction by a single grating co
sisting of a planar layer of identical parallel cylindrical ro
of radiusa whose axes are separated by a distanceD. In the
chosen Cartesian coordinate system, the cylinder axes
parallel to thex axis and lie in thexy plane ~Fig. 1!. The
problem is formulated in terms of the longitudinal comp

FIG. 1. A grating of cylinders in thexy plane.
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nentsEx andHx , for which we develop plane wave expan
sions in terms of the TE and TM resolutes of the electric fi
~Sec. II B!.

In Sec. II C, we make use of the Rayleigh multipo
method in which the longitudinal components of the field
the vicinity of the grating are expressed in terms of tw
dimensional cylindrical harmonic functions, with fiel
sources represented by the irregular functions~i.e., Hankel
functions of the first kind!. The essence of the Rayleig
method is that the regular, or nonsingular, part of the fi
~expressed in terms of Bessel functions of the first kind! in
the vicinity of each cylinder derives from sources on all t
other cylinders, plus contributions from sources at infin
which appear in the form of incident plane waves. In the c
of a grating, the periodicity imposes a Bloch condition on t
source coefficients that leads to the introduction of latt
sums that encapsulate the periodicity and geometry of
lattice. In this way, we may determine the coefficients of t
source terms associated with each cylinder and subsequ
reconstruct the outgoing reflected and transmitted pl
wave coefficients~Sec. II D!, in turn leading to the compu
tation of plane wave scattering matrices.

For gratings which are up-down symmetric, it is possib
to take advantage of the symmetry to reduce the comp
tional complexity of the formulation. In Ref.@18#, this sim-
plification was implemented by considering two problem
associated, respectively, with symmetric and antisymme
incidence field configurations from above and below t
grating; an arbitrary problem can always be written as a
perposition of these. This enables the resulting system
equations to be ‘‘folded,’’ thereby halving their number.
this paper we adopt a more general approach by suppo
that the grating is illuminated from both above and belo
with arbitrary incident fields. This enables the diffractio
properties of the grating to be characterized by plane w
scattering matrices that specify reflection and transmiss
coefficients in each output channel~i.e., diffracted order!,
corresponding to unit inputs in each of these channels~Sec.
II D !. In this way, we are able to express the scattering ma
as a 232 block matrix, in which individual blocks sepa
rately comprise reflection and transmission matrices fr
above and below the grating@Eqs. ~52! and ~53!#. The ad-
vantage of this approach is that no assumptions are m
regarding the up-down symmetry of the grating, but in t
case where the grating is up-down symmetric, we are
able to reduce the number of equations by a folding pro
dure.

B. Plane wave expansions

We consider a single grating consisting of identical par
lel cylindrical rods of radiusa whose axes are separated by
distanceD. In the chosen Cartesian coordinate system,
cylinder axes are parallel to thex axis and lie in thexy plane
~Fig. 1!. The primary incidence channel is defined by t
wave vector

k i5~a0 ,b0 ,2g0!, ~1!

with wave numberk5v/c5(a0
21b0

21g0
2)1/2, where v is
4-2
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the angular frequency andc is the speed of light in vacuum
With u denoting the angle betweenk i and thez axis, andf
denoting the azimuthal angle between the projection ofk i
onto thexy plane and the positive direction of thex axis, the
wave-vector components of the specular channel area0
5k sinu cosf, b05k sinu sinf, g05k cosu.

We denote the transverse resolute in thexy plane of field
quantities by a subscriptedt ~e.g.,Et), while scalar compo-
nents along thex, y, andz axes will be denoted byEx , Ey ,
and Ez , respectively. We introduceK5Z0H, where Z0

5Am0 /e0 is the characteristic impedance of free space, t
normalizing the field equations to involve only electric qua
tities.

We resolve the fields into a sum of two principal pola
izations: transverse magnetic~TM!, in which K5K t , and
transverse electric~TE!, in which E5Et . These modes are
specified by a polarization angled ~Fig. 1!, which is the
angle between the direction of the electric fieldE and the
vector

n5
k i3 ẑ

k sinu
~2!

normal to the plane of incidence. For TE and TM polariz
tions, we haved50,p/2, respectively.

The periodicity of the layer of cylinders introduces di
persion in they direction characterized byeibpy, with bp
5b012pp/D. For in-plane incidence in either of the tw
principal polarizations, the problem isx invariant for a single
layer. However, in conical diffraction, thex dependence is
eia0x while the addition of orthogonal layers, as in a woo
pile, introduces dispersion in thex direction, leading to anx
dependence ofeiaqx, with aq5a012pq/D. The formula-
tion of the single-layer scattering matrices for a tw
dimensional~2D! diffraction problem in such configuration
thus requires the solution of the family$q% of diffraction
problems associated with all possibleaq directions. For con-
venience, we index plane wave coefficients bys, which de-
notes the pair~p,q! for crossed orthogonal gratings, or th
simple subscriptp @more precisely~p, 0!# for conical diffrac-
tion involving only one-dimensional grating structures,
stacks of such. If we putQs5aqx̂1bpŷ, thezdependence o
plane wave fields may be written ase6 igsz, where

gs5Ak22Qs
2, sPV r5$suQs

2,k2% ~3!

gs5 iAQs
22k2, sPVe5$suQs

2.k2%, ~4!

with s5(p,q) denoting an integer pair.
As in Ref. @23#, we expand the transverse fields in line

combinations of the TE and TM plane wave modes,

Rs
M~r !5

Qs

Qs
eiQs•r, Rs

E~r !5
ẑ3Qs

Qs
eiQs•r. ~5!

We definejs5gs /k. Above the grating@23#, the transverse
electric and magnetic fields are
05660
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Et5(
s

@js
21/2$EI ,s

2 e2 igsz1ED,s
1 eigsz%Rs

E

1js
1/2$FI ,s

2 e2 igsz1FD,s
1 eigsz%Rs

M#, ~6!

ẑ3K t5(
s

@js
1/2$EI ,s

2 e2 igsz2ED,s
1 eigsz%Rs

E

1js
21/2$FI ,s

2 e2 igsz2FD,s
1 eigsz%Rs

M#, ~7!

where EI ,s
2 and FI ,s

2 , respectively, denote the TE and TM
components of the incoming electric field, whileED,s

1 and
FD,s

1 , respectively, denote the TE and TM components of
outgoing electric field in the upper half space. In the h
space below the grid, there exist analogous expressions
Et andẑ3Et in terms of the componentsEI ,s

1 andFI ,s
1 of the

incoming electric field and the componentsED,s
2 andFD,s

2 of
the outgoing electric field.

While the plane wave diffraction problem is best form
lated in TE/TM modes, the multipole scattering problem
best handled in terms of principal Cartesian field compone
parallel to the cylinder axes. These may be derived from E
~6! and ~7!, usingEx5Et• x̂ andKx52 ẑ3( ẑ3K t)• x̂. This
leads to

FEx

Kx
G5(

s
H FdE,s

2

dK,s
2 Ge2 igsz1F f E,s

1

f K,s
1 GeigszJ eiQs•r ~8!

above the grating and

FEx

Kx
G5(

s
H F f E,s

2

f K,s
2 Ge2 igsz1FdE,s

1

dK,s
1 GeigszJ eiQs•r ~9!

below the grating, where the outgoing fields@ f E,s
6 # and@ f K,s

6 #
are defined by

F f E,s
1

f K,s
1 G5F2jb ja

2ja 2jb
G FED,s

1

FD,s
1 G , ~10!

F f E,s
2

f K,s
2 G5F2jb ja

ja jb
G FED,s

2

FD,s
2 G ~11!

and where

jb5@js
21/2bp /Qs#, ja5@js

1/2aq /Qs#. ~12!

The incoming fields@dE,s
6 # and @dK,s

6 # are defined analo-
gously to@ f E,s

6 # and @ f K,s
6 #.

C. Multipole expansions

Here, we consider conical diffraction of fields with
specifiedx dependence ofeiaqx, and form a 2D projection of
the problem in theyz plane, denotingr5(y,z) ~Fig. 2!.
Then,

¹yz
2 E1k'

2 E50,

¹yz
2 H1k'

2 H50,
4-3
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where the projected wave vectork' is given by k'
2 1aq

2

5k2 and ¹yz
2 denotes the operator]2/]y21]2/]z2. We in-

troduce the free space Green’s functionG, possessing the
quasiperiodicity of the incident field and satisfying

~¹yz
2 1k'

2 !G~r !5 (
n52`

`

d~r2nDx̂!eib0nD. ~13!

Its Cartesian representation is

G~r !5
1

2iD (
p52`

`
1

gs
ei ~bpy1gsuzu!, ~14!

while in the cylindrical harmonic form, the Green’s functio
is

G~r !52
i

4 FH0
~1!~k'ur u!1 (

m52`

`

SmJm~k'ur u!e2 im arg~r !G ,

~15!

where arg(r ) denotes the polar angle of the vectorr . This
form ~15! of the Green’s function@24–27# underpins the
application of the Rayleigh method and mirrors the struct
of the field identity. Its first term, having a singularity~or
source! at the origin, is associated with a contribution fro
the central (n50) unit cell, while the other terms, associat
with the regular Bessel functions, derive from sources in
other unit cells (nÞ0), with contributions specified by th
lattice sums

Sm5 (
nÞ0

Hm
~1!~ unuk'D !eib0nDeimwn. ~16!

Here, wn5pH(2n), whereH is the usual Heaviside ste
function.

The longitudinal field components in the vicinity of eac
cylinder may be written in terms of cylindrical harmonic
with the following representations:

FIG. 2. The unit cell for a single-layer grating. The crosshatch
region represents the areaU\C for the first integral in Green’s theo
rem @Eq. ~19!#.
05660
e
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Ex~r ,u!5 (
n52`

`

@An
EJn~k'r !1Bn

EHn
~1!~k'r !#einueiaqx,

~17!

Kx~r ,u!5 (
n52`

`

@An
KJn~k'r !1Bn

KHn
~1!~k'r !#einueiaqx,

~18!

applying in the vicinity of the central cylinder. In all othe
cells, the field is inferred from the Bloch condition whic
in turn, implies that the coefficients for the field expa
sions in cell m satisfy a quasiperiodicity relationBn

(m)

5Bn exp(imb0D).
As illustrated in Fig. 2, the regionC is the cross section o

the cylinder inside the unit cellU and we letA5U\C denote
the area enclosed by the perimeter of the cylinder and
boundary of the unit cell. The boundary ofA is denoted]A.
The multipole coefficientsBE5@Bn

E# and BK5@Bn
K# may

now be determined from a Rayleigh field identity, the de
vation of which follows from Green’s theorem,

Ex~r !5E
A
@Ex~r 8!¹ r8

2 G~r ;r 8!2G~r ;r 8!¹ r8
2 Ex~r 8!#dA8

5 R
]A

FEx~r 8!
]

]n8
G~r ;r 8!2G~r ;r 8!

]

]n8
Ex~r 8!Gds8,

~19!

wheren8 denotes the outward pointing normal.
Following the treatment in Ref.@18#, the Rayleigh identity

An
E5 (

m52`

`

Sn2mBm
E1 (

p52`

`

~Jnp
2 dE,p

2 1Jnp
1 dE,p

1 ! ~20!

is derived by a straightforward but lengthy manipulation,
which the cylindrical harmonic field representation~17! and
the plane wave representations~8! and ~9! of fields above
and below the grating are substituted into Eq.~19!, and the
resultant form compared with Eq.~17!. In Eq. ~20!, the first
series expresses the contributions to the regular field du
outgoing fields sourced on all other cylinders and depe
only on the geometry and periodicity of the grating lattic
The second series arises from contributions due to incom
plane waves from above and below the grating with theJn

2

and Jn
1 , which are given below, respectively, denoting t

coefficients of downward and upward propagating incid
plane waves in the cylindrical harmonic basis. Here

Jnp
2 5~21!ne2 inqp, Jnp

1 5einqp, ~21!

whereqp5arg(bp1igp).
Similarly, we may use Green’s theorem to obtain the m

netic field Kx , leading to an analog of Eq.~20!. Equation
~20! and its magnetic analog may be combined in mat
form to obtain

A5SB1J 21FdE
2

dK
2G1J 1FdE

1

dK
1G , ~22!

d

4-4
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whereA5@(AE)T(AK)T#T, B5@(BE)T(BK)T#T and

S5FS 0

0 SG , S5@Sn2m#, J 65FJ6 0

0 J6G , ~23!

with J65@Jns
6 #.

The boundary conditions, which require the continuity
the tangential field components~i.e.,Ez , Kz , Eu , andKu) at
the cylinder boundaries, couple the coefficientsAn

E , An
K ,

Bn
E , andBn

K through the following equation@derived in Ap-
pendix A as Eq.~A14!#:

FAn
E

An
KG52F Mn

EE Mn
EK

Mn
KE Mn

KKG FBn
E

Bn
KG , ~24!

where the matrix elementsMn
EE ,Mn

EK ,Mn
KE ,Mn

KK encapsu-
late the material properties~i.e., refractive indices and radii!
of the cylinders. In block matrix form, we write

A52MB, ~25!

whereM is the block matrix.

M5FMEE MEK

MKE MKKG . ~26!

Here M PQ5diag@Mn
PQ#, whereP and Q select the polariza-

tion parametersE or K.
From Eqs.~22! and~25! we deduce the Rayleigh Identit

B52~M1S!21SJ 2FdE
2

dK
2G1J 1FdE

1

dK
1G D , ~27!

a linear system for the multipole coefficientsB.

D. Plane wave reconstruction and scattering matrices

Following Appendix C in Ref.@18#, the plane wave coef
ficients f E/K

6 in Eqs. ~8! and ~9! may be generated with th
aid of Green’s theorem~19!, where, this time, we exploit the
plane wave form~14! of the Green’s function and taker
to be located above or below the grating; that is,z>a or
z<2a. The reconstruction equation forf E,s

6 is

f E,s
6 5dE,s

6 1
2

gsD
(

n52`

`

~61!ne7 inqsBn
E . ~28!

Equation~28!, together with an analogous expression forf K,s
6

may be cast in matrix form as

FF 2

F 1G5FD2

D1G1 2

D FG21 0

0 G21G FK2

K1GB, ~29!

where
05660
f

F65F fE
6

fK
6G , D65FdE

6

dE
6G , ~30!

G5FG 0

0 GG , K65FK6 0

0 K6G , ~31!

and whereG5diag@gs#, K65@Ksn
6 #5@(61)ne7 inus#.

As noted in Sec. II A, it is advantageous to exploit u
down symmetry when it occurs. We do this through the
troduction of thesymmetrizing transformationC,

C5FCs Ca

Cs 2CaG , ~32!

where

Cs5F I 0

0 I G , Ca5F I 0

0 2I G . ~33!

~Here, and in the sequel, we useI , I, or I to denote the
identity matrix, with the notation determined by the contex!
The form of C reflects the symmetry relationships betwe
electric and magnetic quantities that are imposed by M
well’s equations. IfEx is symmetric, thenHx is antisymmet-
ric and conversely.

We now develop an expression for the scattering ma
S, which characterizes the scattered fields above and be
the grating. The scattering matrix appears as a 232 block
matrix, in which the individual partitions separately com
prise reflection and transmission matrices from above
below the grating. We begin by multiplying Eq.~29! by C,
which commutes withG, to form

CF5CD1
2

D
G21FKs

KaGB, ~34!

where

F5FF 21

F 1 G , D5FD2

D1G , G5FG 0

0 GG ,
Ks5FK % 0

0 K*G , Ka5FK* 0

0 K% G , ~35!

andK % /*5K26K1.
Then, substituting the solution of the Rayleigh ident

~27! into Eq. ~34! gives

CF5CD2
2

D
G21FKs

KaG~M1S!21@J 2 J 1#D,

~36!

which we can write as

CF5CD2
2

D
G21FKsLJ s KsLJ a

KaLJ s KaLJ aGCD, ~37!

where
4-5
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L5~M1S!21, J s5FJ% 0

0 J*G , J a5FJ* 0

0 J% G ,
~38!

andJ% /*5J26J1.
Equation~37! has been derived without making any a

sumptions about the symmetry of the grating. However,
shown in Appendix B, the termsKsLJa andKaLJs van-
ish for gratings having an up-down symmetry, in which ca
the system decouples completely.

Next, we express the solution of the diffraction proble
in terms of plane wave scattering matrices using TE-TM
compositions of plane wave fields by introducing a transf
mation that converts the plane wave components conta
within F and D into TE and TM components. This is don
with a transformationX, whose form follows from Eq.~11!.
We expressX as the block matrix

X5F2jb ja

ja jb
G , ~39!

with

jb5diagFjs
21/2bq

Qs
G , ja5diagFjs

1/2ap

Qs
G . ~40!

We have

CF5FX 0

0 XG FFD
s

FD
aG , CD5FX 0

0 XG FFI
s

FI
aG , ~41!

where

FD
s5FED

21ED
1

FD
21FD

1 G , FD
a5FED

22ED
1

FD
22FD

1 G ~42!

F1
s5FEI

21EI
1

FI
21FI

1 G , FI
a5FEI

22EI
1

FI
22FI

1 G . ~43!

We define the scattering matrixS as

FFD
s

FD
aG5SFFI

s

FI
aG , ~44!

so that from Eqs.~37!, ~41!, and~44!,

S5I2
1

D
X21G21FKsLJ s KsLJ a

KaLJ s KaLJ aGX, ~45!

whereX5diag@X,X#. However, we can express Eq.~45! in
a simpler form. It is elementary thatX 215LX, whereL

5diag@(ja
21ja

2)21,(ja
21ja

2)21# and, consequently,

X 21G215LG21X. ~46!

A simple calculation shows that the diagonal terms of
matrix LG21 are of the formk/k'

2 , so that
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X21G215
k

k'
2 X. ~47!

The scattering matrixS, in terms of the symmetric and ant
symmetric fields problems, can now be written as

S5I2
k

k'
2 D

XFKsLJ s KsLJ a

KaLJ s KaLJ aGX. ~48!

The final step is to derive terms for the reflection a
transmission matrices, using Eq.~48!. Using the transforma-
tion

T5FI I
I 2IG , ~49!

we convert the symmetrized field vectors to up and do
propagating plane waves as follows:

FFD
2

FD
1G5T21FFD

s

FD
aG , FFI

2

FI
1G5T21FFI

s

FI
aG , ~50!

where

FD
65FED

6

FD
6 G , FI

65FEI
6

FI
6 G . ~51!

Consequently,

FFD
2

FD
1G5T21STFFI

2

FI
1G . ~52!

LetRa andRb , respectively, denote reflection matrice
for incidence above and below the grating and letTa andTb
denote the corresponding transmission matrices. It is c
that

FFD
2

FD
1G5F Ta Rb

Ra Tb
G FFI

2

FI
1G . ~53!

A comparison between Eqs.~52! and~53! thus yields explicit
expressions for the reflection and transmission matrices
the case where the matrix is up-down symmetric, we hav

Ra5Rb52
k

2k'
2 D
X~KsLJ s2KaLJ a!X, ~54!

Ta5Tb5I2
k

2k'
2 D
X~KsLJ s1KaLJ a!X, ~55!

which generalizes our earlier results in Ref.@18#. For grat-
ings exhibiting up-down symmetry, it is possible to take a
vantage of various symmetry relationships among the te
in order to halve the number of equations, thus reduc
computational complexity. This is discussed in Appendix
4-6
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III. THE BLOCH METHOD

We now lay the groundwork for the consideration
modes in MOFs with air cores in Sec. IV. The same ide
will apply to band diagrams for woodpile configurations. T
idea is to use scattering matrices to determine frequency
gions in which propagating modes satisfying the Bloch c
dition exist, and to formulate this condition as an eigenva
constraint problem, which enables us to determine the b
structure of planar, stratified photonic crystals. Our treatm
is based on a technique developed originally in electron
fraction by McRae@28# and applied recently in photoni
crystals by Gralak@17# and Bottenet al. @19#, but reformu-
lated here to increase the robustness of the method in o
to handle the greater computational demands associated
gratings and grids in conical diffraction.

Our earlier approach@19#, based upon aT matrix
formulation,1 worked well for general 2D structures provide
that the dimension of the scattering matrices was not
large. To improve the stability of the method for 2D stru
tures, and to make possible the calculations for 3D structu
~such as the woodpile!, in which the diffracting element gen
erates a doubly dimensioned set of plane waves, we h
reformulated the eigenvalue problem in terms of anR matrix
formulation@29,30#. The formulation outlined here applies t
the most general~3D! configuration. In the case of the ai
guided modes of photonic crystal fibers, a minor simplific
tion, requiring the replacement of a doubly dimensioned
of plane waves by the singly dimensioned set for a grating
conical incidence, is required.

We begin with TE-TM reflection and transmission scatt
ing matrices for the elementary, single layer relative to
standard phase origin at the center of the primary cylind
and denoted by the superscripted~0!. For incidence from
above and below, these are (Ra

(0) ,T a
(0)) and (Rb

(0) ,T b
(0)),

respectively. The array is constructed in theyz plane, using
basis vectorss5Dêy and t5syêy1szêz , wheresy and sz
are real. As in Ref.@19#, we introduce phase origins at th
center of the upper and lower edges of the basic~paral-
lelopiped! cell generated by the basis vectorss and t at
points P15(0,sy/2,sz/2) above the layer andP25(0,2sy/2,
2sz/2) below the layer~Fig. 3!.

Relative to these origins, the component of the elec
field transverse to the elementary layer is

Et
~ j !5(

s
@js

21/2$Ej ,s
2 e2 igs~z2zj !1Ej ,s

1 eigs~z2zj !%Rs
E

1js
1/2$F j ,s

2 e2 igs~z2zj !1F j ,s
1 eigs~z2zj !%Rs

M#, ~56!

where j 51 refers to the region above the layer andj 52 to
the region below. An analogous expression may be deri
from Eq. ~7! for the magnetic field. Correspondingly, th
reflection and transmission scattering matrices relative
these phase origins are then given by

1Unrelated to the matrixT in Sec. II D.
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F Ta Rb

Ra Tb
G5QPFT a

~0! Rb
~0!

Ra
~0! T b

~0!GPQ, ~57!

where

Q5FQ21/2 0

0 Q1/2G , P5FP1/2 0

0 P1/2G , ~58!

Q5diag@Q,Q#, P5diag@P,P#, ~59!

Q5diag@eiQs•~0,sy ,sz!#, P5diag@eigp ,sz#. ~60!

In the nomenclature of Sec. II D, we have denoted fie
incident from above and below the layer by partitioned ve
tors of plane wave coefficientsF1

6 and outgoing fields by
partitioned vectorsFD

6 @Eq. ~51!#. In this section, it is more
convenient to writeF 1

2 andF 2
1 , respectively, for the in-

coming fields above and below the layer, where these fie
are now referred to the phase origins atP1 and P2 . The
outgoing fieldsF 1

1 ~above the layer! andF 2
2 ~below the

layer! are expressed in terms of the interaction of the incid
fields with the basic layer:

F 1
15RaF 1

21TbF 2
1 , ~61!

F 2
25TaF 1

21RbF 2
1 . ~62!

From Eq.~56! and its magnetic analog, the total transver
electric and magnetic fields can be written as the vectors

Ej5X21/2~F j
21F j

1!, ~63!

Kj5X1/2~F j
22F j

1!, ~64!

whereX5diag@j,j21# andj5diag@gs/k#.
The R matrix is then introduced through the definitio

@30#

FE1

E2
G5X21/2FR11 R12

R21 R22
GX21/2FK1

K2
G , ~65!

FIG. 3. Geometry of the unit cell~defined by the fundamenta
translation vectorss andt! for the Bloch method calculations. Th
phase originsP1 and P2 of the fieldsF 1

1 ,F 1
2 ,F 2

1 , andF 2
2 ,

above and below the grating, respectively, are shown.
4-7
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and by substituting Eq.~64! into Eq. ~65! and settingF 1
2

andF 2
1 in turn to 0, we form expressions that lead to th

partition elements ofR:

R115~Y11X2X1!~I2X2X1!21, ~66!

R12522Z1X2~I2X1X2!21, ~67!

R2152Z2X1~I2X2X1!21, ~68!

R2252~Y21X1X2!~I2X1X2!21, ~69!

whereZj5(I2Rj )
21, Yj5(I1Rj )Zj , Xj5TjZj .

Solving Eqs.~64! and ~65!, we derive the cross laye
transformation

G25MG1 , ~70!

where

Gj5FI2R11 I1R11

I 2I GFj , ~71!

with

M5FR222R11 I
I 0GFR12

21 0

0 R21
G ~72!

and

Fj5FF j
2

F j
1G , Gj5FGj

2

Gj
1G . ~73!

The Bloch condition for field quasiperiodicity in the d
rectione3 imposes the constraint

F 2
65mF 1

6 with m5exp~2 ik0•êz! ~74!

~where k0 denotes the Bloch vector! and, in turn, this re-
quires thatG25mG1 , resulting in the eigenvalue problem
MG15mG1 .

In its present form, the cross layer transformation ma
M is just a reformulation of theT matrix treatment. It thus
suffers from the same ill conditioning that causes ca
strophic numerical errors with increasing matrix dimensio
These manifest themselves particularly in the case of
problems, for which the plane wave orders are doubly
mensioned. Here, the problem is associated with the in
sion ofR21

21, which, in turn, is related to the inversion of th
transmission scattering matricesT which occur in theT ma-
trix method. These problems are due to the peripheral en
of R andT, associated with highly evanescent input a
output orders, becoming small with increasing order. Wh
neitherR norT are well conditioned, a diagonally domina
matrix such asI2R is well conditioned with increasing
order.

These problems may be alleviated in various ways, al
which eliminate the necessity to invert the ill-condition
matrices R12 and R21. One approach, also adopted b
Gralak @17#, is to consider the eigenproblem for a matr
05660
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M85(I1zM)21 ~z constant!, the eigenvalues of which ar
(11zm)21, from which the values ofm may be inferred.
Some elementary manipulation invertsM8 analytically,

M85FR12D 2R12DR21

2zD D$R121z~R222R11!%
G , ~75!

D5$R122z2R211z~R222R11!%
21, ~76!

thus removing any numerical instabilities. While the value
z is chosen to avoid singular behavior, the valuesz561
generally suffice.

An alternative treatment involves the consideration of
modified matrixM95(zM1z21M21)21, the eigenvalues of
which are (zm1z21m21)21. Again, ill conditioning is
eliminated by analytic inversion to yield

M95F z21R12 0

0 I GF A B

B 2A
G21F I 0

0 zR21
G , ~77!

whereA5R222R11 and B5z21R121zR21 The inverse
in the central factor of Eq.~77! may be calculated analyti
cally as before, or numerically, as this form is already w
conditioned.

Appropriate values ofz may easily be chosen, particularl
for lattices and layers which exhibit high symmetry. In th
case of structures such as the woodpile, for which the un
lying layer ~comprising crossed grating layers! does not ex-
hibit a simplifying up-down symmetry, we utilize the prece
ing general technique withz51.

In the case of the calculation of the space-filling modes
an air-guided holey fiber, the lattice is a 2D hexagonal str
ture composed of individual 1D cylinder gratings, each
which is up-down symmetric. In this case, the lattice rep
cation vector ise35(0,sy ,sz), where s25d/2, s35)d/2.
This, in turn, simplifies the form of the lateral shift matrixQ
and introduces a natural choice forz. Here,Q5z1/2Q0 ,
with z5exp(ib0d) and withQ05diag(21)s. The imposed
lattice symmetry and relations in Eqs.~57! and ~58! lead to
Tj5z2 j 23PQ0T0Q0P0 , together with analogous identi
ties for the reflection matrices.

These, together with Eqs.~66!–~69!, reduce R22
52R11 and z21R1252zR21, thereby block diagonaliz-
ing M9, Eq. ~77!, and halving the dimension of the eigen
value problem. The Bloch factorsm may thus be inferred
from the eigenvalues (zm1z21m21)21 of z21R12R22

21.
In addition to the eigenvalues, it is advantageous in so

situations to also characterize a semi-infinite crystal by
reflection scattering matrixR} , which can be derived from
the eigenvectors. In all cases, we generate an eigenvectG
for each eigenvalue and infer from these the correspond
eigenvectorsF5@F 2F 1#T of the original problem. As
discussed in Ref.@19#, the eigenvalues are paired into fo
ward and backward propagating states. For evanescent s
which carry no energy, those with eigenvalueumu,1 are
regarded as forward propagating, while those withumu.1
are regarded as backward propagating.

For states that carry energy, the treatment is more delic
requiring a calculation of the downward flux:
4-8
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FIG. 4. Finger diagrams for a hexagonal array of air holes, in a silica matrix~refractive indexn51.4897), showing a plot ofkL versus
bL ~both dimensionless! with L55.0mm, using radiia51.5, 1.6, and 1.75mm. The graphical representations below the finger diagra
depict reflectance of a semi-infinite crystal for various values of the Bloch vector and a fixed valuekL510. The dotted line represents th
case where the component of the Bloch vector perpendicular to the grating plane lies on the pathGKM on the border of the irreducible
segment of the Brillouin zone. The solid line represents the case where the component of the Bloch vector perpendicular to the gra
lies on the lineGM .
s
ar

y
d

id
nt
h
tra
n
m
o

se

d
efl
d
m
io
ld
-

de,
ing
art

sing

ri-
ur-
n
nic
ing
an
en-
we
ing
ga-
ht

-

d.
zed
ble

4,

ut
EF5F 2
HIrF22F 1

HIrF12 iF 2
HIeF11 iF 1

HIeF2

~78!

@this equation may be derived from Eq.~C6!#. Those states
with EF.0 are regarded as forward propagating, while tho
with EF,0 are backward propagating. With all modes p
titioned as above, we form matricesF̂1 andF̂2 , the columns
of which are the vectorsF1 andF2 of the forward propa-
gating states. Following Ref.@19#, we form the reflection
matrix R`5F̂1F̂2 , from which we may compute the energ
reflectanceR̂HIrR̂ from a corresponding incidence fiel
D, with R̂5R`D.

IV. AIR-GUIDED MODES

We look now at the application of these tools to the gu
ing of light in air-cored optical fibers, the confineme
mechanism of which is the photonic band gap. In these p
tonic crystal fibers, the light propagates in a large cen
hole in a silica matrix surrounded by a cladding, which co
sists of a hexagonal array of smaller air holes. For so
modes, the bulk of the energy propagates in the central h
allowing the possibility of low-loss propagation at tho
wavelengths for which the glass is highly absorbing.

The location of such modes is a delicate process an
demanding numerical task which we have commented bri
on previously@31#, in the context of the multipole metho
@32,33#, where what is required is to find a narrow minimu
of a determinant as a function of a complex propagat
constant. This quantity represents the variation of fie
along the axis~Ox here! of the cylindrical holes, and is gen
erally specified in terms of a complex effective index
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neff5b/k, ~79!

where the fields vary axially as exp(ibx), and wherek de-
notes the wave number in free space of the mode.2 The real
part of neff governs the propagation properties of the mo
while the imaginary part determines its energy loss dur
propagation through its lateral spread. This imaginary p
has to be reduced to practically imposed values by increa
the number of rings of air holes@34#.

The determination of air-guided modes requires two c
teria to be simultaneously satisfied: first, the air holes s
rounding the central hole must provide a ‘‘mirror’’ conditio
corresponding to the cladding array operated in a photo
band gap in which no propagating modes capable of carry
energy to infinity exist; second, the mode must satisfy
appropriate phase or propagation condition, i.e., an eig
value equation. Furthermore, for low-loss propagation
require the bulk of the light to propagate in air, necessitat
that neff'1, and a reasonable approximation to the propa
tion condition, namely, that the modes lie close to the lig
line @35#, given byb5k.

The Bloch formulation of Sec. III provides us with a con
venient method of specifying regions in thek-b plane in
which the mirror condition of a total band gap is satisfie
The search for modes can then be carried out in locali
regions of this plane, a feature we have found indispensa
in our studies of air-guided modes.

We illustrate the effectiveness of this technique in Fig.

2This use ofb is at variance with that established in Sec. II B, b
is standard optical fiber notation.
4-9
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SMITH et al. PHYSICAL REVIEW E 66, 056604 ~2002!
where we show that we call ‘‘finger diagrams,’’ named so
the fine unshaded~white! fingers that denote complete ban
gaps. These are plotted for a structure in which air holes
steadily increasing radius are used to confine a mode
central hole of the type shown in Fig. 6. Each point on th
diagrams shows the result of a search for modes as the B
vector traverses the edge of the irreducible segment of
Brillouin zone for an array of hexagonally packed air ho
in a silica matrix, with a prescribed value ofk andb. In fact
@19# the sideGM of the irreducible segment of the Brilloui
zone is characterized by normal incidence on a grating w
period D5L, the hexagonal array constant, and withsy
5L/2 andsz5)L/2, while the segmentGKM is character-
ized by normal incidence on a grating with periodD
5)L, and with sy5)L/2 and sz5L/2. The finger dia-
grams are the result of scanning over a rectangular mes
k-b space, searching for propagating states on theGM and
GKM sides and shading the diagram according to the n
ber of modes found—providing some indication of t
‘‘leakiness’’ of the confining structure. Unshaded~white! re-
gions denote an absence of propagating modes and thus
resent complete band gaps, the first requirement for
guided modes. Our calculations are performed with a hyb
MATHEMATICA/FORTRAN code in which the scattering matr
ces are computed in aFORTRAN routine and communicate
via MATHLINK to MATHEMATICA , in which the eigenvalue
problem of Sec. III is solved and the finger diagram draw
The method is quite efficient, requiring some 50 min of co
putation time for a 1013101 array ink-b space on a 600
MHz Pentium III system.

The graphs below the finger diagrams attempt to cha
terize the dispersion diagram for a fixedkL510 by display-
ing the reflectance of a semi-infinite array, illuminated
normal incidence from above corresponding to the Brillou
zone segmentsGM andGKM . This reflectance is calculate
from the scattering matrixR` described in Sec. III. The dot
ted line is the case for which the component of the Blo
vector perpendicular to the grating plane lies on the p
GKM @22# on the border of the irreducible segment of t
Brillouin zone. For a given value ofbL andkL, this com-
pletely determines the Bloch vector. The solid line is the c
where the component of the Bloch vector perpendicula
the grating plane lies on the segmentGM .

Figure 4 displays finger diagrams3 for arrays of varying
cylinder radius and it is evident that the confinement reg
of the finger labeledA widens with increasing air hole ra
dius, and vanishes completely for normalized rad
a/L&0.3. That is, for holes with normalized radii less th
0.3, such air-guided modes can no longer be supported.
note that not all confinement regions grow with air hole
dius, as shown by the narrowing of the finger labeledB in
Fig. 4. In Table I we give indicative figures for the widths
two prominent fingers in Fig. 4.

In all cases of Fig. 4, the width of fingerA is determined
by the GKM aspect, as exemplified in the lower graph

3A full color version of Fig. 6 may be viewed at our websi
http://www.physics.usyd.edu.au/theory/dif/node7.html
05660
r

of
a

e
ch
e

h

in

-

ep-
ir-
id

.
-

c-

t

h
h

e
o

n

s

so
-

,

which show the total band gap with a 100% reflectance. To
band gaps, however, are not a necessary condition for
air-guided modes, as exemplified in Fig. 2 of Whiteet al.
@31#, in which modes have been found outside the total c
finement finger, but which lie within theGM aspect.

Figure 5, shows the finger diagram, the dispersion cu
for an air-guided mode, and the light line for a photon
crystal fiber with specified geometry. The location of t
dispersion curve on the high-frequency side of the light l
implies that the guiding mechanism cannot be total inter
reflection, but instead must arise through band-gap effe
We do not detail the method by which these are located
refer the reader to our multipole treatment@31–33#. The
mode of Fig. 6 was found by searching in fingerA of Fig. 4.

FIG. 5. Dispersion curve for the mode shown in Fig. 6, w
L55.0mm anda51.75mm.

TABLE I. The width of a finger as a function of inclusion
radiusa and area fractionf, for a hexagonal array of air holes, in
silica matrix ~refractive indexn51.4897). The array constant i
L55.0mm.

a ~mm! f FingerA FingerB

1.75 0.444381 0.0616 0.0243
1.70 0.419350 0.0528 0.0657
1.65 0.395046 0.0449 0.0822
1.60 0.371466 0.0269 0.0818
1.55 0.348612 0.0090 0.0748
1.50 0.326484 0.0040 0.0736
1.45 0.305081 0.0000 0.0655
4-10
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FIG. 6. A mode confined in a central air hole
of radius 5.55mm, in a silica matrix, by a set of
three layers of air holes hexagonally packed. T
hexagonal structure around the central hole co
sists of a finite set of air holes~radius a
51.75mm), in a silica matrix~refractive index
n51.4897), and corresponds to a hexagonal
ray of constantL55.0mm. The top two contour
plots display electric and scaled magnetic fie
magnitudes, while the lower two graphs displa
the axial Poynting vector.
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V. CONCLUSION

The theory described in this paper, for the conical diffra
tion of plane waves by dielectric or metallic cylinder gra
ings, is an important addition to our tool kit of computation
methods for photonic crystal structures. The method ge
ates plane wave reflection and transmission scattering m
ces, which are the basic building blocks of energy and pro
gation property calculations. In this paper, the theory
formulated in a general fashion, enabling its use in the c
struction of 2D stacks of 1D gratings, and its future use
the study of the 3D stacks in the woodpile configuration.
have also outlined a computationally robust formulation
the Bloch problem for propagation characteristics of 2D a
3D arrays, and have described elegant simplifications
halve the dimension of the eigenproblem for highly symm
ric structures. These tools have underpinned our nume
studies of guided modes in air-cored photonic crystal fib
@31# and have proved to be both efficient and accurate.
have exemplified the use of the method and numeric
demonstrated relationships between the width of total ba
gap fingers in the dispersion diagram and the radius of
holes in the cladding.

The generalization of the methods described here to g
ings having cylinders composed of metallic or lossy mate
als is immediate, and no numerical problems arise, with
sole change being that the boundary condition elements
fined in Appendix A involve complex quantities. As with a
multipole methods, the field representation in Wijngaa
multipole expansions is quite efficient, yielding good co
putational accuracy for relatively small computational tim
While the detail of theory that is described here refers only
circular cylinders, the general framework is amenable
noncircular cylinders, requiring only the replacement of t
‘‘impedance’’ matricesM in the modal scattering operato
(M1S)21. This separation of the lattice geometry enca
sulated in lattice sums which populateS and the material
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properties of the structure which are contained withinM is
a computationally attractive feature that is common to
Rayleigh multipole methods. The introduction of conical d
fraction is most significantly reflected in the lattice sum
which now involve a projected wave numberk' in accor-
dance with Maystre’s theorem. When the axial componen
the wave vector is sufficiently large,k' becomes imaginary
In the context of the examples in his paper, this occurs w
the light line is crossed. The issue is of greatest significan
however, in the case of a cross grating such as the wood
in which the diffracted plane wave set is doubly dimension
and imaginary values ofk' arise routinely. Fortunately, this
causes little problem as the lattice sum series converges
rapidly. Indeed, our computational methods@18# based on the
work of Ref. @36# readily extend to accommodate this cas
As a final aside, we note that the theory of conical diffra
tion, when operated in-plane, generates in a block diago
structure the scattering matrices for both principal polari
tions.

Finally, we note that the paper outlines a number of g
eral conservation relations for lossless structures, deri
from energy conservation, applicable to 2D and 3D str
tures. For multipole formulations, these are analytically co
served, independently of series truncation, while for ot
techniques they provide convergence tests. In our cont
we have found these identities to be an invaluable aid in
testing of our code.
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APPENDIX A: BOUNDARY CONDITIONS

The field in the vicinity of each cylinder is expressed
terms of cylindrical harmonics. Thus, in the vicinity of th
central cylinder we write
4-11
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Ex~r ,u!5 (
n52`

`

@An
~E!Jn~k'r !1Bn

~E!Hn
~1!~k'r !#einueik ix,

~A1!

Kx~r ,u!5 (
n52`

`

@An
~K !Jn~k'r !1Bn

~K !Hn
~1!~k'r !#einueik ix,

~A2!

with eik ix denoting thex dependence of the fields. Thes
series converge in an annular region bounded inwardly
r 5a and outwardly by the radial distance to the next fie
source located at the center of the nearest adjacent cylin
Within each cylinder of radiusa, the field is given by the
regular expansion

Ex~r ,u!5 (
n52`

`

Cn
~E!Jn~nk'r !einueik ix, ~A3!

Kx~r ,u!5 (
n52`

`

Cn
~K !Jn~nk'r !einueik ix, ~A4!

wheren denotes the refractive index of the cylinders. At t
cylinder boundariesEx , Kx , Eu andKu are continuous. We
can findEx andKx from Eqs.~A1!–~A4!, while the follow-
ing equations@37#:

Eyz5
i

k'
2 ~ki“yzEx2kx̂3“yzKx!, ~A5!

K yz5
i

k'
2 ~ke r x̂3“yzEx1ki“yzKx!, ~A6!

which follow from Maxwell’s equations, together with th
relations Eu5Eyz•û and Ku5K yz•û, can be used to find
expressions forEu andKu .

We find, after some simplification, that the boundary co
ditions imply

An
~E!Jn~k'

e a!1Bn
~E!Hn~k'

e a!5Cn
~E!Jn~k'

i a!, ~A7!

An
~K !Jn~k'

e a!1Bn
~K !Hn~k'

e a!5Cn
~K !Jn~k'

i a!, ~A8!

An
~E!Jn8~k'

e a!1Bn
~E!Hn

~1!8~k'
e a!

5c1Cn
~E!Jn8~k'

i a!1c2nCn
~K !Jn~k'

i a!, ~A9!

An
~K !Jn8~k'

e a!1Bn
~K !Hn

~1!8~k'
e a!

52c2nCn
~E!Jn~k'

i a!1c3Cn
~K !Jn8~k'

i a!. ~A10!

In these equations, the constantsc1 , c2 , andc3 are defined
by
05660
y

er.

-

c15
k'

e e r

k'
i , c25

ik i

ak'
e k0

F S k'
e

k'
i D 2

21G , c35
k'

e

k'
i ,

~A11!

wherek'
e 5k' andk'

i 5An2k22ki
2.

We can now eliminate$Cn
(E)% and$Cn

(K)% from Eqs.~A7!–
~A10!. In order to express the result of this calculation in
compact form, we introduce the nomenclature

J~c!5
Jn8~k'

e a!

Jn~k'
e a!

2c
Jn8~k'

i a!

Jn~k'
i a!

, ~A12!

H~c!5
Hn8~k'

e a!

Hn~k'
e a!

2c
Jn8~k'

i a!

Jn~k'
i a!

. ~A13!

The result can be expressed in the form

FAn
~E!

An
~K !G52F Mn

EE Mn
EK

Mn
KE Mn

KKG FBn
~E!

Bn
~K !G , ~A14!

where

Mn
EE5

1

Dn

Hn~k'
e a!

Jn~k'
e a!

@c2
2n21J ~c3!H~c1!#, ~A15!

Mn
EK52Mn

KE5
1

Dn
F 1

Jn~k'
e a!G

2 2ic2

pk'
e a

n, ~A16!

Mn
KK5

1

Dn

Hn~k'
e a!

Jn~k'
e a!

@c2
2n21J ~c1!H~c3!#, ~A17!

and

Dn5J ~c1!J ~c3!1c2
2n2. ~A18!

It is easy to see thatMn
EK andMn

KE are real. Furthermore
a little straightforward manipulation shows that

Mn
EE511 il1 ,

Mn
KK511 il2 , ~A19!

wherel1 andl2 are real.
In the case wherek i5(0,b0 ,2g0), that is,f5p/2, Eqs.

~A15!–~A17! simplify to those given in Ref.@18#:

Mn
EE5

nJn8~nka!Hn~ka!2Jn~nka!Hn8~ka!

nJn8~nka!Jn~ka!2Jn~nka!Jn8~ka!
, ~A20!

Mn
EK5Mn

KE50, ~A21!

Mn
KK5

Jn8~nka!Hn~ka!2nJn~nka!Hn8~ka!

Jn8~nka!Jn~ka!2nJn~nka!Jn8~ka!
. ~A22!
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APPENDIX B: SYMMETRY OPERATIONS AND FOLDING

In this section we show how up-down symmetry reduc
the computational complexity of the formulation. In the fir
instance, we show that the blocksKsLJ a andKaLJ s

vanish in the case of up-down symmetry. Next, we deriv
folding procedure, which halves the number of equations

Through the use of the matrixC to decompose the field
into symmetric and antisymmetric components, the Rayle
identity ~27! may be written as

B52
1

2
~M1S!21@J sJ a#CD. ~B1!

We may get two equations from Eq.~B1!, one involving
J s and the other involvingJ a. For theJ s case, let us
suppose that@(BE)T (BK)T#T is a solution of the equation

~M1S!FBE

BKG5J sFX1

X2
G , ~B2!

with @X1
T X2

T#T5(CD)1 . Then

F MEEBE1SBE1MEKBK

MKEBE1SBK1MKKBKG5FJ %X1

J *X2
G . ~B3!

Let U5diag@(21)m# and let the reversing matrixP be the
matrix with secondary diagonal terms equal to unity and
other terms equal to zero, that is,P5@d2m,n#. The symme-
tries Mn

EE5M 2n
EE , Mn

KK5M 2n
KK , Mn

KE52M 2n
KE , and Mn

EK

52M 2n
EK , which follow from Eqs.~A15!–~A17!, and are a

consequence of the up-down symmetry for a uniform cy
der grating, allow us to deduce that

PUMEEUP5MEE, PUMKKUP5MKK,

PUMEKUP52MEK, PUMKEUP52MKE, ~B4!

while from Sm5(21)mS2m we deduce

PUSUP5S. ~B5!

Substitution of these results into Eq.~B3! and resultant sim-
plification leads to

~M1S!F PUBE

2PUBKG5J sFX1

X2
G , ~B6!

showing that

BE5PUBE, BK52PUBK, ~B7!

since Eq.~B2! has a unique solution.
We now have

Ka~M1S!21J s5KaFBE

BKG5FK*BE

K %BKG . ~B8!

Using Eqs. ~B7! and the resultsK*52K*UP, K %

5K %UP, we deduce thatK*BE50 andK %BK50. Thus
05660
s

a

h

ll

-

Ka~M1S!21J s50. ~B9!

Similarly

Ks~M1S!21J a50. ~B10!

These considerations show that the system~37! decouples
completely for gratings having an up-down symmetry.

Finally, we note that we can reduce computational co
plexity by ‘‘folding’’ the equations, thus reducing their num
ber by a factor of 2. Consider the expressionKsLJ s(CD)1
appearing in Eq.~37!. The above methods show that if

@BE BK#T5LJ s~CD!1 , ~B11!

then @BE BK#T5@PUBE 2PUBK#T. Consequently, after
some matrix manipulation, we have

KsFBE

BKG52F K̃ % B̃E

K̃*B̃KG5
def

2K̃sF B̃E

B̃KG , ~B12!

where the tilde denotes a folded matrix, that is,K̃ % /*

5@K sn
% /*#, n>0 andB̃E/K5@Bn

E/K#, n>0.
After a straightforward calculation, we find from Eq

~B11! that

F B̃E

B̃KG5FM̃EEe211s̃% M̃EK

M̃KE M̃KKe211s̃%
G21

J̃ s~CD!1 ,

~B13!

where@s̃mn
% /*#5@Sm2n1(21)nSm1n#, m,n>0 and

e5diag@«m#, «m5H 1/2 if m50

1 if m.0,
~B14!

denotes the Neumann symbol.
Thus KsLJ s(CD)152K̃sL̃J̃ s(CD)1 and similarly
KaLJ a(CD)252K̃aL̃J̃ a(CD)2 . Hence, for up-down
symmetric gratings we can write Eq.~48! as

S5I2
2k

k'
2 D

XF K̃sL̃J̃ s 0

0 K̃aL̃J̃ aGX. ~B15!

The matrices

S% 5I2
2k

k'
2 D
XK̃sL̃J̃ sX,

S*5I2
2k

k'
2 D
XK̃aL̃J̃ aX ~B16!

are the scattering matrices corresponding to the symme
and antisymmetric problems discussed in Ref.@18#.
4-13
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APPENDIX C: VERIFICATION OF THE CODE

1. Convergence tests

Figure 7 shows the transmittance for TM polarization a
function of wavelength for a ten-layer stack of cylinder gr
ings in a square array. The incidence parameters area0
50.3, b050.5, andg051. The cylinder radii are 0.09mm,
the layer periodicity is 0.25mm, and the layer separatio
~center to center! is 0.22mm. We let the number of cylindri-
cal harmonics such as in Eqs.~17! and ~18! be 2Nh11 and
we let the number of plane wave orders in representat
such as Eq.~28! be 2Np11. Tables II and III show that
stability is achieved for only a modest number of terms.

2. Energy conservation

From

“•~E3H* !5 iv~m0uHu22e* uEu2!, ~C1!

which follows from Maxwell’s equations, and an applicatio
of Gauss’s theorem toE3H* 2E* 3H over the regionA
5U\C between the cross sectionC of a cylinder and the unit
cell U ~Fig. 2!, it follows that for lossless cylinders

ReH E
U1

ẑ•E3H* dsJ 5ReH E
U2

ẑ•E3H* dsJ , ~C2!

that is,

FIG. 7. Graph showing the transmittanceT for ten parallel lay-
ers of cylinders as a function of wavelengthl for TM polarization.
The incidence parameters area050.3, b050.5, and g0

51 (mm)21. The cylinder radii are 0.09mm, the layer periodicity
is 0.25mm, and the layer separation~center to center! is 0.22mm.
05660
a
-

s

ReH E
U1

Et• ẑ3K t* dsJ 5ReH E
U2

Et• ẑ3K t* dsJ . ~C3!

We now substitute Eqs.~6! and~7! into Eq. ~C3!. After sim-
plification, we find that the downward fluxes atU1 andU2

are related by

(
sPVr

@~ uEI ,s
2 u21uFI ,s

2 u2!2~ uED,s
1 u21uFD,s

1 u2!#

2 i (
sPVe

@~EI ,s
2* ED,s

1 2FI ,s
2* FD,s

1 !

2~EI ,s
1* ED,s

2 2FI ,s
1* FD,s

2 !#

5 (
sPVr

@~ uED,s
2 u21uFD,s

2 u2!2~ uEI ,s
1 u21uFI ,s

1 u2!#

2 i (
sPVe

@~ED,s
2* EI ,s

1 2FD,s
2* FI ,s

1 !

2~ED,s
1* EI ,s

2 2FD,s
1* FI ,s

2 !#, ~C4!

where the setsV r andVe have been defined in Eqs.~3! and
~4!.

The various terms of Eq.~C4! can be written in matrix
form. For example,

(
sPVr

uED,s
1 u25~ED

1!HI rED
1 ,

(
sPVe

EI ,s
2* ED,s

1 5~EI
2!HIeED

1 . ~C5!

Here, I r and Ie are unit diagonal projection matrices tha
respectively, select the~real! propagating and the evanesce
orders. That is,@ I r #pq5dpq for pPV r and 0 otherwise. Cor-
respondingly,@ Ie#pq5dpq for pPVe and 0 otherwise, and
thus I r1Ie5I and I r Ie50.

In turn, using the composite nomenclature of Eq.~51!, the
energy fluxes atU1 andU2 reduce to
at a
em

9
0

TABLE II. Table showing convergence of the transmittance for ten parallel layers of cylinders
wavelengthl50.385mm. The parametersNh andNp , as well as the physical specifications of the syst
are described in the text and in the caption of Fig. 7.

Nh52 Nh54 Nh56 Nh58 Nh510 Nh512

Np52 0.943521 0.916007 0.915795 0.915789 0.915789 0.91578
Np53 0.943530 0.915960 0.915739 0.915731 0.915730 0.91573
Np54 0.915730 0.915729 0.915729
Np55 0.915729 0.915729
Np56 0.915729 0.915729
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TABLE III. As for Table II, but at a wavelengthl50.61mm.

Nh52 Nh54 Nh56 Nh58 Nh510 Nh512

Np52 6.11197231027 4.39091031027 4.38165631027 4.38108631027 4.38107631027 4.38107631027

Np53 6.11716031027 4.39362131027 4.38427431027 4.38364931027 4.38363331027 4.38363331027

Np54 4.38366631027 4.38365031027 4.38364931027

Np55 4.38365031027 4.38364931027

Np56 4.38365031027 4.38364931027
i-

of

ula-
m-
ile

ent
the
F I
2HIrF I

22F D
1HIrF D

12 iF I
2HIeF D

1

1 iF D
1HIeF I

25F D
2HIrF D

22F I
1HIrF I

1

2 iF D
2HIeF I

11 iF I
1HIeF D

2 , ~C6!

whereIr5diag@I r ,I r # andIe5diag@Ie ,2Ie#.
By substituting the following relationships~expressed in

terms of scattering matrices! between the outgoing and inc
dent fields:

F D
15RaF 1

21TbF I
1 ~C7!

F D
25TaF I

21RbF I
1 , ~C8!

into Eq. ~C6!, we derive

FI
H@ Ir2SHIrS2 i IeS1 iSHIe#FI50, ~C9!

whereFI5@(F I
2)T (F I

1)T#T and

S5FRa Tb

Ta Rb
G , Ir /e5FIr /e 0

0 Ir /e
G . ~C10!

Since Eq.~C9! must hold for allF1 , we conclude that
,

J

T

ci

an

.

05660
SHIrS5Ir2 i IeS1 iSHIe . ~C11!

Extracting the four partitions, we derive

T a
HIrTa1Ra

HIrRa5Ir2 iIeRa1 iRa
HIe ,

~C12!

T a
HIrRb1Ra

HIrTb52 iIeTb1 iT a
HIe , ~C13!

Rb
HIrTa1T b

HIrRa52 i IeTa1 iT b
HIe , ~C14!

Rb
HIrRb1T b

HIrTb5Ir2 iIeRb1 iRb
HIe .

~C15!

The energy conservation relationships~C11!–~C15! rely
entirely on physical principles. However, a generalization
the argument in Sec. 3 A 2 of Ref.@21# shows that these
conservation properties are embedded in the modal form
tion and preserved to within machine precision in any co
putational implementation. In a computational sense, wh
Eqs.~C11!–~C15! provide an indication of the quality of the
coding of the program, they are not by themselves suffici
to provide a test of the convergence and accuracy of
method.
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